Dinitrogen Complexes of Osmium(III) and Ruthenium(III) Ammines

By CLIVE M. ELSON, J. GULENS, I. J. ITZKOVITCH, and JOHN A. PAGE* (Department of Chemistry, Queen's University, Kingston, Ontario, Canada)

WE have been studying the electrochemistry of the dinitrogen complexes of Os^{II} and Ru^{II} and our results are consistent with the following:

(1)
$$[Os(NH_3)_5N_2]^{2+} \xrightarrow{rev} [Os(NH_3)_5N_2]^{3+} + e$$

 $[Os(NH_3)_5N_2]^{3+} \xrightarrow{k = 0.02 \text{ sec}^{-1}}$
 $[Os(NH_3)_5(H_2O)]^{3+} + N_2$

 $\dagger X = SO_4^{2-}$ or HSO_4^{-} in sulphate electrolyte.

(2)
$$[(\mathrm{NH}_3)_3\mathrm{RuN}_2\mathrm{Ru}(\mathrm{NH}_3)_5]^{4+}$$

$$[(NH_3)_5 RuN_2 Ru(NH_3)_5]^{5+} + e$$

$$[(\mathrm{NH}_3)_5\mathrm{RuN}_2\mathrm{Ru}(\mathrm{NH}_3)_5]^{5+} \xrightarrow{k = 0 \cdot 1 \operatorname{sec}^{-1}} \\ [\mathrm{Ru}(\mathrm{NH}_3)_5\mathrm{N}_2]^{2+} + \mathrm{Ru}^{\mathrm{III}}(\mathrm{NH}_3)_5\mathrm{X}^{\dagger}^{\dagger}$$

(3)
$$[\operatorname{Ru}(\operatorname{NH}_3)_5\operatorname{N}_2]^{2+} \rightarrow \operatorname{Ru}^{\operatorname{III}}(\operatorname{NH}_3)_5\operatorname{X}^{\dagger}_{\dagger} + \operatorname{N}_2 + e$$

The starting materials were prepared according to published procedures.¹ All potentials reported are relative to a saturated calomel reference. The work was carried out at 25.0° .

For $[Os(NH_3)_5N_2]^{2+}$, controlled-potential oxidation in a 0.08 M-MeSO₃H electrolyte on Pt at +0.32 v consumed 1.0 faraday per mole and gave a solution with a u.v.

spectrum² consistent with that of $[Os(NH_3)_5(H_2O)]^{3+}$. Cyclic voltammetry on the $[Os(NH_3)_5N_2]^{2+}$ was carried out in a H_2SO_4 - K_2SO_4 electrolyte (pH 1·1, $\mu = 0.31$) at a Pt disc electrode. The forward scan gave an anodic peak $(E_{\mathbf{p}} = + 0.315 \,\mathrm{v})$ and the reverse scan a cathodic peak $(E_{\mathbf{p}} = + 0.255 \text{ v})$. The voltammograms were entirely consistent with the requirements for a reversible oneelectron charge-transfer followed by a break up of the product.^{3,4} Decomposition of the $[Os(NH_3)_5N_2]^{3+}$ was observed only at slow scan rates: the ratio of peak currents, $(i.p.)_c/(i.p.)_a$, was significantly less than 1. The rate constant for the decomposition was determined from the voltammograms³ using scan rates of 10, 20, and 50 mv sec⁻¹ and switching potentials of +0.375 to +0.475 v. The results were also confirmed by double-potential step chronoamperometry⁵ using pulses of 2.5 to 10 sec duration. A rate constant for the decomposition of $2 \times 10^{-2} \sec^{-1}$ was consistently obtained.

Controlled-potential oxidation of the dimeric [(NH₃)₅-RuN₂Ru(NH₃)₅]⁴⁺ in a H₂SO₄-K₂SO₄ electrolyte (pH 2·3, $\mu = 0.30$) on Pt at +0.50 v consumed 1.0 faraday per mole. The products were $[Ru(NH_3)_5N_2]^{2+}$ and $Ru^{III}(NH_3)_5X$ in a 1:1 mole ratio as determined by the u.v. spectrum and polarography, respectively.⁶ Cyclic voltammetry in a $0.28 \text{ }\text{m-H}_2\text{SO}_4$ electrolyte at a Pt disc electrode gave an anodic peak ($E_p = +0.495 v$) on the forward scan and a cathodic peak ($E_p = +0.435 v$) on a reverse scan. The

criteria used before were again consistent with a reversible one-electron charge-transfer followed by break up of the product. The rate constant for the decomposition was a consistent 1 imes 10⁻¹ sec⁻¹ (scan rates 10 to 200 mv sec⁻¹ for switching potential of +0.600 v; 5 sec pulses).

Controlled-potential oxidation of the $[Ru(NH_3)_5N_2]^{2+}$ in the H_2SO_4 - K_2SO_4 electrolyte (pH 2·3, $\mu = 0.30$) on Pt at +0.72 v consumed 1.0 faraday per mole and gave a solution with the u.v. spectrum⁶ characteristic of Ru^{III}(NH₃)₅X. However, in this case, cyclic voltammetry did not give evidence for the formation of [Ru(NH₃)₅N₂]³⁺ even at scan rates up to 100 v sec⁻¹. Rather, the forward scan on a graphite electrode gave an anodic peak $(E_p = +0.81 \text{ v})$ while the reverse scan gave a well displaced cathodic peak $(E_{\rm p} = -0.33 {\rm v}$ at 100 mv sec⁻¹). This latter peak is characteristic of $\mathrm{Ru}^{\mathrm{III}}(\mathrm{NH}_3)_5\mathrm{X}$ in the sulphate electrolyte.

The existence of N₂ complexes of Os^{III} was first suggested by Chatt et al.⁷ While we have not prepared a solid complex, our results substantiate their findings. The fact that we are unable to detect a monomeric $Ru^{III}-N_2$ complex may be attributed to a lack of stabilizing π back bonding. However the dimeric RuIII_N₂-RuII complex is relatively stable, presumably due to the π back bonding from Ru^{II}.

We gratefully acknowledge financial support from the Province of Ontario and the National Research Council of Canada.

(Received, May 15th, 1970; Com. 754.)

¹ A. D. Allen, F. Bottomley, R. O. Harris, V. P. Reinsalu, and C. V. Senoff, J. Amer. Chem. Soc., 1967, 89, 5595; D. F. Harrison, E. Weissberger, and H. Taube, Science, 1968, 159, 320; A. D. Allen, and J. R. Stevens, Chem. Comm., 1967, 1147. ² H. Taube, personal communication.

- ³ R. S. Nicholson and I. Shain, Analyt. Chem., 1964, 36, 706.

- ⁴ P. A. Malachesky, Analyt. Chem., 1969, 41, 1493.
 ⁵ W. M. Schwarz and I. Shain, J. Phys. Chem., 1965, 69, 30.
 ⁶ I. J. Itzkovitch and J. A. Page, Canad. J. Chem., 1968, 46, 2743.
- ⁷ J. Chatt, J. R. Dilworth, H. P. Gunz, G. J. Leigh, and J. R. Sanders, Chem. Comm., 1970, 90.